20 research outputs found

    NF-κB: a new player in angiostatic therapy

    Get PDF
    Angiogenesis is considered a promising target in the treatment of cancer. Most of the angiogenesis inhibitors in late-stage clinical testing or approved for the treatment of cancer act indirectly on endothelial cells. They either neutralize angiogenic growth factors from the circulation or block the signaling pathways activated by these growth factors. Another group of angiogenesis inhibitors are the direct angiostatic compounds. These agents have a direct effect on the endothelium, affecting cellular regulatory pathways, independently of the tumor cells. The reason that this category of agents is lagging behind regarding their translation to the clinic may be the lack of sufficient knowledge on the mechanism of action of these compounds. The transcription factor NF-κB has been recently connected with multiple aspects of angiogenesis. In addition, several recent studies report that angiogenesis inhibition is associated to NF-κB activation. This is of special interest since in tumor cells NF-κB activation has been associated to inhibition of apoptosis and currently novel treatment strategies are being developed based on inhibition of NF-κB. The paradigm that systemic NF-κB inhibition can serve as an anti-cancer strategy, therefore, might need to be re-evaluated. Based on recent data, it might be speculated that NF-κB activation, when performed specifically in endothelial cells, could be an efficient strategy for the treatment of cancer

    Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair

    Get PDF
    The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells

    Deficiency of Huntingtin Has Pleiotropic Effects in the Social Amoeba Dictyostelium discoideum

    Get PDF
    Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca2+ or Mg2+ but not pulses of cAMP. Although hd− cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd− cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein
    corecore